Manuscript Click here to download Manuscript WST-EM17178
Revised.docx

The modeling of lead removal from water by deep eutectic
solvents functionalized CNTs: Artificial neural network
(ANN) approach

Seef Saadi Fiyadh? , Mohammed Abdulhakim AlSaadi®®’, Ahmed El-
Shafiet”, Mohamed Khalid AlOmar®¢, Sabah Saadi Fayaed?, Ako R.
Hama®, Sharifah Bee?

2Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of
Malaya, 50603 Kuala Lumpur, Malaysia

By U s Lo

O o <)

°University of Malaya Centre for lonic Liquids, University Malaya, Kuala Lumpur 50603,
Malaysia

~1 oy W s s R

:Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

4Civil Engineering Department, Faculty of Engineering, Komar Univérsity of Science and
Technology, Sulaymaniyah, Irag
*E-mail: mdsd68j@gmail.com, Tel: +60163630693, Fax: +60 3 7967 5311

O 0

**E-mail: elshafie@um.edu.my, +60122003857

Ly o1

Abstract

Oy U s

The main challenge in the lead removal simulation is the behavior of non-linearity relationships

~1

between the process parameters. The conventional modeling technique usually deals with
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L problem by linear method. The substitute modelling technique is ANN system, and it is selected
: to reflect the non-linearity in the interaction among the variables in the function. Herein, the
synthesized ceep eutectic solvents (DESs) were used as functionaiized agent with carbon
é nanotubes (CNTs) as adsorbents of (Pb*"). Different parameters were used in the adsorption
S study including, pH (2.7 to 7). adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and
45
fé Pb”™ initial concentration (3 to 60 mg/ L). The number of experimental trials to feed and train
ji the system was 1358 runs conveyed in lab scale. Two ANN types were designed in this work,
; the FFBP anc LR, both methods are compared based on their predictive proficiency in terms
g? of the (MSE), (RMSE), (RRMSE), (MAPE) and (R?) based on the testing dataset. The ANN
gg model of lead removal was subjected to accuracy determination and the results showed
54
22 determination coefficient (R*) of 0.9956 with MSE 1.66 10~ The maximum relative error is
g; 14.93% for the FBNN model.
i
1

lie



[
Lo S o o o DR Y o 4 3 TY - 0 O A6 T ol

[
W B

=l on e o

OO D

PR B PR et e e s

N N
5oy W= b N

[RORR A

e 0 0

o

1 SN GG T 9P S0 % T % S PSS W I ' 7% S P T %)

SN
) NN D O =0 U s L Y

IS o

J{ =S SN - 8
{0 (o ¢ o HEES o L ¥

W

= 2 Ve Jl o o RN s 1 S O 2 Y o 0 B LS T e

oY Gy v LWt Ln W Lnoon n eneolnoln
L B 1

(S =4

Keywords: carbon nanotubes: deep eutectic solvents; water treatment; lead ions; neural
network; feed forward

1. Introduction
The removal of heavy metal ions from water has been a crucial step to curb the resulting

environmental problem. Any presence of heavy metals in water is recognized as a threat to
both the humen health and aquatic organisms (Wang & Chen 2006). In addition, the properties
of heavy metals to be non-biodegradable and has the tendency to build up in living organism
may lead to various disease. Heavy metals may be present in the solution as free ions or in the
form of molecules, and chelate metal ligands in any water streams (Salisu 2016). Lead 1s
known to be one of the primary toxins of the heavy metals, discharge into the environment by
battery manufacturing, metal electroplating, pigment and dye industries (Majumdar
2010). The consumption of each such contaminate water may affect kidney, brain, liver and
central nervous system which subsequently will lead to irreversible brain damage, weakness of
muscles and nervous disorders (Geetha 2015). Research has been done to prove that the
adsorption technique is one of the effective method to extract metal ions from water solution
(Pimentel 2007). The effectiveness of adsorption is majorly dependent on the selection
of appropriate process condition, including the mass of sorbent, duration of the process, pH
and temperature of the system (Lourie & Gjengedal 2011). Many studies have been done on
different materials to be used as an adsorbent to extract metal cations from water, for example,
activated carbon (Chen & Wu 2004), clay minerals (Oubagaranadin & Murthy 2010),
biomaterials (Gupta 2006) and pistachio vera shells (Yetilmezsoy & Demirel 2008).
However, these adsorbents have not proven satistfying results.

Rescarchers have suggested carbon nanotubes(CNT) to be used as most effective
adsorbents to extract numerous pollutants such as dyes, metal ions phenols, aniline, drugs and

other contaminants (Ibrahim 2016). The qualities of CNTs such as large surface area,
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diameter and the shorter equilibrium time than other materials contribute to its applications.
CNTs have the potential to be used in variety of applications due to its distinctive electrical,
physical and chemical properties.

CNTs have been successfully used to extract various heavy metals, for instance chromium,
copper, zinc, lead, cadmium, arsenic and mercury (Thsanullah 2016). Researchers have
reported that carbon nanotubes are efficient and is significantly adsorb lead more than copper
and cadmium in the suitable pH valuc. Besides, the presence of different ions, the strength of
ions and the pH value are the major criteria that influences the adsorption of Pb** (Kabbashi

2009b).

Moreover, CNTs proved a great affinity for interaction with different compounds
(Ihsanullah 2016). Therefore, functionalization is the key to improve the activity of CNTs.
The conventional functionalization usually involves hash acids and non-environmentally
friendly chemicals with complicated processes. Consonantly, the need for environmentally
friendly functionalization agents with simple chemical processes is crucial (Hayyan
2013).

Recently, deep eutectic solvents (DESs) have gain an enormous amount of interest due to
its involvement in many applications, DESs was first introduced as a low-cost development or
replacement of ionic liquids (ILs). DESs have many advantages over ILs in team of availability
of the row martials and easy to synthesis with minimum environmentally harmful waste
(AlOmar 2016¢). Therefore, DESs have conquer many fields of science. Lately, DESs

involvement in many nanotechnologies related fields including media for synthesis of

nanoparticles (Chen 2014; Chakrabarti 2015; Jia 2015; Xu 2016),
electrolyte in nanostructure sensors (Zheng 2014), and electrolyte in nanoparticle

deposition (Abbott 2009; Gu & Tu 2011; Renjith 2014). Functionalization agent of

CNTs (AlOmar 2016a; AlOmar 2017). AlOmar et,al. 2016 have used choline
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chloride based DESs as a functionalization agent of CNTs to prepare a sufficient adsorbent of
Pb>" jons. consequently, the dataset prepared from that work has been implemented for the
modelling in this work (AlOmar 2016b).

New techniques such as artificial neural network (ANN) has been considered as a less
complicated model in the sophisticated biological network. The substitute technique of
modelling, artificial neural network system (ANN), is been selected in order to represent the
non-linear function relationship among variables. The artificial neural network (ANN)
techniques do not require any mathematical induction since the ANN analyses examples and
recognizes the patterns in a series of inputs and outputs of dataset without any prior
assumptions about their characteristics and interrelations (Mandal 2009). The speciality
of the ANN ta generalize and identify the pattern of any non-linear and complex development
makes it an influential modelling means. Neural network has the ability to extract complicated
data that is beyond the capability to be observed by a human or any computer technique.
Experiments have been successfully performed to use ANN to model the adsorption of lead
ions by pistachio Vera L. shells (Yetilmezsoy & Demirel 2008), the removal of Laneset Red G
on Chara contraria (Mjalli 2007), Laneset Red G on walnut husk removal efficiency
(Celekli 2012), and the intercalated tartrate-Mg-Al layered double hydroxides as an
adsorbent (Yasin 2014). Several studies have recently been conducted on water quality
prediction models (Wu & Xu 2011; Chibole 2013). Moreover, there are some research have
been applicd on different arcas for example, modeling the fermentation media optimization
(Desai 2008b), modeling of a microe-wave-assisted extraction method (Khajeh 2011).
1.1 Problem statement

The Artificial neural network (ANN) is used to predict the adsorbent capacity of Pb>™ from
water by using a set of experimental data that have been prepared in advance. The main

advantages of using the ANN are their precision, salient and efficacy in apprehending the non-
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linear relationship current between the variables of multi-input or output in complicated
system. Moreaver, the availability in abundance and easy handing, the ANN is economically
and the best option to predict Pb>" adsorption. From an economical perspective, ANN can be
utilised as a substitute of CNTs that is relatively higher in cost to study the adsorption process.
Furthermore, the adsorption prediction model can play a key role in providing relevant
information related to the input variables. In addition to that, the development of such models
can be considered as low-cost, and reduce the engineering effort.
1.2 Objective

The aims of this study are: (1) to create an ANN model to establish the relationship that
exists between the adsorbent dosage, concentration of Pb*", pH and contact time to predict the
DES-CNTs adsorption capacity. of Pb™™ from water solution based on the experimental data set
prepared in lab scale(AlOmar 2016b). (2) The adsorption Capacity of the DES-CNTs
adsorbent for Pb?>" will be predicted by using ANN model and compare it with the
experimentally measured values. (3) Two neural network types will be designed and compared

based on the performance of the network.

2. Materials and methods

2.1 Experimental
In a previous study, a novel Pb”*" adsorbent was prepared based on pristine CNTs oxidized

with KMnOs, and then functionalized by choline chloride: triethylene glyeol (salt:HBD) 1:2
DES (TEG). The preparation of the adsorbent was in two stages, the primary oxidation
involved sonication of P-CNTs with KMnOs for 2 h @ 65 °C, later the resulted oxidized CNTs
(K-CNTs) was sonicated with DES for 3 h @ 65 °C to produce KTEG-CNTs. The adsorbent
was comprehensively characterized by indicting the RAMAN shift using Raman spectroscopy.
The functional groups associated with the functionalization process was analysed using FT-IR.

The surface charge, surface area and surface morphology was investigated by Zeta potential,
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BT surface area FESEM and TEM respectively. The structural phase was also investigated by
conducting the XRD profile. Morcover. batch adsorption study was performed at ambient
condition. Adsorbent dosage, initial concentration, pH value and contact time were taken as
variables to the response of adsorption capacity of KTEG-CNTs. 158 points were taken to
study the influence of each parameter and the interaction among them on the adsorption
capacity. The restriction taken for each parameter is listed in Table 1. The work flow is

demonstrated in scheme 1.

2.2 Design of Artificial neural networks (ANN) structure
The NN Toolbox R2014a of MATLAB is a mathematical software that was used to predict

the adsorption capacity of functionalized carbon nanotube to adsorb Pb*™ from water solution.
A total of 158 experimental datasets were prepared and used to create the ANN model. The
experimental variables are initial concentration of Pb2™, adsorbent dosage, pH and contact time.

Artificial neural network (ANNs) is a sophisticated statistical approach that created to
behaves similar to the nervous system of human by developing a logical model containing of
interconnective neurons system in a computing network (Kurt & Kayfeci 2009; Hemmat Esfe

2015). The neural network is used to resolve complicated test models such as pattern
recognition, classification and estimation.

The supervised and the unsupervised are the two major types of ANNs that can be used in
classification or regression. At the supervised model, the network is trained in order to adjust
the optimum weight values between neurons that makes it able to produce the desired output
value(s) after taking different number of instructing data from the previous experimental
examples. Whereby, for the unsupervised model, there is no preferred design value during the
introducing of the input to the structure. The supervised method was applied in this work.

The 158-present data were allocated into training and testing sets, where it comprises of

four (4) input and one (1) output, and the testing files contained only the output parameter that
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were not operated for the training processes. The data were subdivided as defined percentages
to prepare separate data sets for training and testing processes of the ANN model. Nevertheless,
the division is organised on the basis that the training data forms the major share of the latter.
Subsequently, the data were swirched within the spreadsheet and analysis was done to
invalidate the presence of existing combination of trend and the inherent characteristics within
the data (GK : Zhang & Govindaraju 2003; Sarangi & Bhattacharya 2005).

A total of two (2) types of neural network were designed to analyse the feed-forward back-
propagation (BP) and the layer recurrent, as to develop a NN. The number of neuron(s),
layer(s), training and testing sets and the type of transfer function need to be determine
carefully.

The suitable training algorithm can only be determined upon the identification of the
complexity of the problem, the number of data point in the training set, the value of biases and
weights in the network and the maximum error target. Six training function as presented in
table 2, were used and compared based on their performance to select the best suitable training
function in both the feed-forward back-propagation (BPNN) and the layer recurrent. For all
training function, three hidden layers were selected for the feedforward Backpropagation (BP)
and five hidden layers for the layer recurrent (LRNN), the number of hidden layers were
selected by try and error to design the best NN structure.

Similarly, to selection the optimum number of hidden neurons to be used in the network is
one of the major challenges for neural networks, using imprudent hidden neurons will lead to
overfitting problem, this will cause to the network an over-estimate the complexity of the goal
problem. It significantly effects the generalization performance, which cause a significant
deviation in predictions. In the network optimization, 2 hidden neurons were used as the first

hypothesis up to fifteen for both the feedforward backpropagation (BP) and the layer
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recurrent(LR). In this perception, the determining of the optimum number of hidden neurons
to avoid over-fitting problem is critical in function estimation using NN.

The transfer function is one of the most important factors in the model creation, in this study
a three-different transfer fimction are used (TANSIG, PURELIN and LOGSIG) to choose the
optimum one for the model.

2.3 Feed-forward Back-propagation (BP)

The feed-forward Back-propagation is usually used learning algorithm in ANN application,
which used the back-propagation system as the gradient decent technique to minimize network
error. Each layer in the BPANN has several neurons and each neuron transmits input values
and processes to the next layer. As shown in figurel, the value of the input variable is multiplied
by the connection weights wii which connects the input to the hidden layer.

The FFBP models consist of input layers, hidden layers and output layer in a multilayer
neural network. The input layer consists of nodes, the hidden layer contains a nodes and the
output layer consists of the K nodes. Consequently, the  canbe written as:

= (=Y .+ )

= =

(1

The is the transfer function in the equation 1 or its the activation function, by and aj ( =
123, : =1,2,3, : =12, 3, ) are the weight values, is the input number, and  and
are the deviation. The function in equation (1) is a type of mapping rule to transfer the neurons
from the weighted input to output, also it is a strategy type to introduce the nonlinear into the
FBNN network (Kothari & Agyepong 1996).

There are plenty of Feed-forward Back-propagation Neural Network (FBNN) transfer

function in the backpropagation unit. The following transfer function selected principles used
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as a monotonous non-decreasing, differentiable and continuous function. In this work the most

universal binary logistic sigmoid transfer function is used and it is written as following:

1
()=

I+ )
The optimal parameters can be selected by adjusting the weight values of the network as
the FBNN owned by a supervisory learning algorithm technique (El-Shafie & El-Manadely

2011), and oprimum means the different between the target values or actual values and the

network output  achieved the minimurm or the target that is:

1 :
=22l =)

B (3)
To produce an output vector for the ANN which is close as possible to
target vector ...t alearning, also named as training process, is employed to find the

optimum bias vectors  and the optimum weight matrices that reduce the error which been

established in advance that typically has the from:

T3 -

Here, =ANN output; isthetargetoutput ; =the output value ofnodesand =training

4

patterns number. The training is a process which the connection weights of the ANN are
adapted by a continuous process of stimulation through the situation in which the network is
embedded.

The input data is normalized in the range of (0 to 1) form to avoid the overfitting, the
adopted FBNN model structure, it is realized that all the unite at the same layer does not connect
to each another, and the connections between the developed layers can be expressed based on

the weighted coefficient (El-Shafie 2007).
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The weighted signals and bias from the input neurcns are summed by the hidden neurons
and then projected through the transfer function. In the (FFBP) algorithm, the inputs forwarded
into the network until the end of the network, output are initiated and compared to the target
value and the error is calculated (Kurt & Kayfeci 2009; Hemmat Esfe 2013).

The back-propagation learning is to establish the relationship between the target data and
the input data that is usually assigned with a random initial weight and later updating them by
comparing the results between the actual and target values. In diversity of research using neural
computations, consist of different transfer functions were possible to use depending upon
problem nonlinearity and the complexity of data. in order to design the proper network.

2.4 Layer recurrent

The artificial recurrent neural network (RNNs) preform a great and different classes of
computational modeling which is usually created by more or less detailed analogy with the
biological brain module. In the layer-recurrent, many abstract neurons and also may called
processing elements or units which are interconnected by likewise distracted synaptic links or
connection, which enable activation to pass through the network.

The (LRNN) is almost the same as the (FNN) except that both the hidden and output layer
of the (LRNN) has recurrent connection associated with a tab delay which is different with the
(FNN). In addition to the input space, the RNN works on an internal state space, which is a
trace of what has already been processed by the network. Neurons in RNN can be connected
to any other neurons in the same or a previous layer. the recurrent neural network (RNNs)
consist of input layer, hidden layer, and output layer, with activation function, feedback
connection weights, and interconnection weights. Figure 2 illustrates the flow of the input
samples in the LRNN architecture.

The first hidden layer of the LRNN are connected to the inputs and the following layer

which assemble the networks output and has a connection from the previous layer. The input

10
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weights of the hidden layer come from the input samples, and the following layer has a weight
comes from the preceding hidden layer. Though, the hidden layer does not directly affect with
the external environment, they have great influence on the following layer or the output layer
of the ANN.

The LRNN is categorized by the appearance of a backward connection in the hidden and
output layers providing backward connection initiated from each output of hidden layer
connected to one of the weights of the input layer by the context unit. Moreover, the backward
connection from the output of the hidden layer as presented in figure 2, is occupied from the
real output during the training prosses of the LRNN. The selection of proper network
parameters such as the hidden layers number, the neurons number in each layer, and the
function of transfer types which is one of the most important network parameters considered
for the architecture.

2.5 Evaluation indicators for simulation models

Two competing neural networks have been developed, the feedforward back-propagation
and layer recurrent for modeling was used in this study. The total of 158 experimental data
were divided into two subsets of testing and training (Desai 2008a; Lee 2011) for
developing ANN model. The experimental variables are Pb*" concentration, adsorbent dosage,
pH, and contact time. The assessment of multicriteria was carried out. Therefore, the (FNN)
and (RNN) models performance was determined by comparing the actual data and the
simulated data. The simulation behaviour of each model was evaluated by using the root mean
square error (RMSE), relative error (RE), mean square error (MSE), relative root mean square
error (RRMSE) and the mean absolute percentage error (MAPE). Formulas for calculation

MSE, RMSE, RE, RRMSE, and MAE were given below and as follow:

Y

1
:_;( O~ n) (5)

11
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Where
= the actual value.
= the simulated value.
= the regression sum of squares.
= the sum of squares of residuals.

Generally, MSE, RMSE, RE, MAPE and RRMSE equations were selected to indicate the
models performance, were based on the obtained result by comparing the evaluated error of

the actual and simulated model. The best model the model with the smallest error is considered.

3. Results and Discussion
In this section, the used methods to select the optimal neuron number, training function,

performance of the selected model, model performance evaluation and the relative error

between the predicted and the actual results are discussed.

12
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3.1 Model performance evaluation
The functioning of every model was presented by using the MSE, RMSE, RRMSE and

MAPE the values of each simulated method is tabulated in table 3.

With reference to the MSE values of every model listed in Table 3, it is observed that the
MSE of FBNN modél is1.66 10~ which is a practical value and reflects the efficacy and higher
accuracy in comparison to the LRNN model to simulate the relationship between initial
concertation of Pb*", adsorbent dosage, pH and contact time to analyse the adsorbent capacity
of KTEG-CNTs.

A simulaticn model is categorised to be reasonable and accurate if the MAPE value is below
30% and 5% respectively. Based on this acceptance criteria, the MAPE value for FBNN that
is 4.10% is considered to as accurate, whereas the MAPE value of 5.60% for LRNN does not
fall in the range of accuracy.

It is evident that the FBNN provides better result in comparison to LRNN, Furthermore,
the FBNN model had resulted in RMSE and RRMSE value of 1.28 10 and 5.76 107
respectively which is lesser than the results obtained in LRNN model. The probability of error
in simulated value is low with the result of RMSE and RRMSE getting closer to zero.
Therefore, these criteria further confirm that the FBNN method provide higher degree of
accuracy in compa_rison to the LRNN method.

3.2 Training and testing dataset

This section discusses the part of a typical multilayer network workflow. In common
practice, the data is first partitioned into two sets. The first set is termed as training set, that is
used to record the gradient and modify the network weights and biases. Testing set is the
second subset, which is not applied during the training but is functional to compare various
models and plot the errors of test sets. Generally, each backpropagation training group starts
with several initial weights and biases, and various division of data into training and testing
sets. These different conditions can lead to varied solutions for the same problem. In this study,

13
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different training and testing percentage used to find the optimal set with minimum error, the
used sets are presented in Table 4:

The used data in this study is 158 were separated into training and testing sets, different sets
of data were used as presented in Table 4 to find the optimal set for model creation.

At 70% training and 30 % testing the MSE for the FBNN is 2.44 107 and for the LRNN is
1.08 107" whereby, when increasing the percentage of the training set to 75% with 25% for the
test set, the MSE decreased to 9.73 107 for the FBNN and 9.41 102 for the LRNN.
Furthermore, the percentage of training increased to 80% with decreased the percentage of the
test set to 20% there was an improvement in the result of the MSE it shows 5.87 107 for FBNN
and 2.96 10 for the LRNN. The minimum MSE for the FBNN and LRNN was at 85% at the
training and 15% at the test set with 1.66 107 for the FBNN and 7.22 10~ for the LRNN. While,
by increasing the training set to 90% for the training and 10% for testing the MSE showed a
higher value with 6.67 10 for the FBNN and 8.45 10 for LRNN. Hence, the optimal split is
85% for the training and 15% for the test. The results demonstrate that FBNN model is more
accurate than LRNN as the values of the MSE for all the sets for the FBNN lower than the
MSE for LRNN.
33N eurons number optimization

The best structure of the ANN model and its specification difference are determined with
reference to the smallest value of MSE of the test dataset. With an increasing the number of
the neurons, the network generates different MSE values for the testing dataset. Figure3
illustrate the relationship between the number of neurons in each hidden layer and MSE
obtained.

For the feedforward backpropagation, 3 hidden layers were used. The MSE value of the
network result is higher for the 2 neurons (MSE 7.43 10?) and 3 (7.60 107 hidden layer

neurons, than those with 4 shows a higher drop to (MSE 6.51 107%) While, for 5 (MSE 5.03 107
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%), 6 (MSE 4.25 107%) and 7 (MSE 3.54 107%). The value of the MSE reduced significantly from
3.54 10 to 1.48 107 with the application of 8 hidden neurons and continue to decrease with
subsequent rise in the neurons number from 8§ to 10. Therefore, the neural network consisting
of 10 hidden neurons with MSE value of 1.66 107 was selected as the best case based on the
MSE value.

Furthermore, when the neurons number increase to 13, the MSE value displayed a slight
increment from 1.66 107 to 4.98 107, Subsequently, a further addition in the neurons number
from 13 to 15 the result of the MSE is sharply increased. The increment might be assign to the
MSE characteristics input vector used and performance index used in this work.

While for layer recurrent as shown in figure3 the number of hidden neurons was tested on
5 hidden layers as the best for the structure of the network. 2 hidden neurons were used at the
first try and showed (9.01 102 MSE), while for 3 neurons the MSE decreased to (8.04 107)
and, for 4 the MSE increased (8.27 10). While when using 5 neurons there is a decline in the
MSE with 7.03 10°%), however, increasing the neurons to 6 the MSE showed a slightly decrease
to (3.83 102), the number of hidden neurons were later increased to 7 and 8 hidden neurons to
improve the stabilization of the network, the MSE decreased to (2.27 107 and 2.06 107)
respectively, with the increasing the neurons to 9 the MSE reached to (1.94 103). furthermore,
with 10 neurons the MSE decreased to 7.22 10™*which shows the best stabilization of the
network. with | | and 12 neurons the MSE resulted displayed a higher value which are 1.96 10
3 and 4.68 10~ respectively. Finally, with 13,14 and 15 neurons the MSE rises to 1.04 102,
9.84 107 and 1.86 10~ This confirm that using 10 neurons at each hidden layer shows the best
performance of the network.

3.4 Selection of the training function for FBNN and LRNN.
It is laborious to find the fastest training algorithm for a given problem due to the

complexity of the problem that depends on various factors. This section discusses on the
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comparison of the various training algorithms. Networks are trained on six different training
functions and identified based on the R*value and the MSE. Six training functions shown in
Table5 were used and compared to select the best suitable training function in both the
feedforward and backpropagation (BP) and the layer recurrent (LR).

For the feed-forward back-propagation the comparison study resulted that the Bayesian
reoularization backpropagation (trainrb) had resulted in smallest value of MSE in comparison
to different sets of algorithms such as the Levenberg Marquardt bbackpropagation (trainlm)
algorithm. As shown in Table S, the smallest MSE was obtained about 1.66 107, and 0.9956
of R? for trairbr function presented in figure 4 which reflects a great performance of the
network. This was followed by the trainlm with a MSE of 6.79 10™. However, both trainrb and
trainlm shows a great behaviour than the other algorithms such as trainbef, traincgb, traincgf
and traincgp.

The structure and the combinatorial characteristic of the test data influences the results
optimality initiated by some BP algorithms. Therefore, the problem complexity was solved by
the results of several analysis of training algorithms used for the comparison.

Whereby, for the layer recurrent the first benchmark is using trainbfg as training function
with tansig transfer function and gave a result of the MSE is 1.28 1072, While for the trainbr
training function the MSE is decreased to 7.22 10, which shows a great performance of the
network. However, by using a different training function such as traincgb and traincgf the MSE
is 4.44 107 and 2.89 10~ which are greater than the MSE of trainbr training function. While,
the MSE for the traincgp is 1.32 107, The performance of the trainlm is also showed a great
value of the MSE 2.82 10~ which is also can be considered as one of the best suitable training
function for the network.

It can be realized that the trainbr training function is the best suitable for both feed-forward

backpropagation and layer recurrent network.
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3.5 Relative error indication
Relative error is one of the indications of error in the model prediction values comparing

the predicted values to the actual values, measurements and calculation can be characterized
with regard to their precision and accuracy. The term accuracy can be defined as how closely
the predicted value matches the actual value, whereas precision 1s referred to how closely
values matches with each other.

The highes: relative error value is found to be 14.93 % for the FBNN model and 18.67%
for the LRNN model calculated by equation (10) which is considered as an acceptable value.

Based on the results shown in figure3, it is observed that occurred error for all the testing
dataset is less than 14.93% for the FBNN whereby, the maximum error for the LRNN is less
than 18.67% for the LRNN. Which indicate that the FBNN model is more accurate than the
LRNN model. This proves the effectiveness and reliability of the proposed approach to extract
features from input data. The hybrid FBNN algorithm network model is able to provide a
perfect prediction of KTEG-CNTs as Pb*" absorber from water. The uncertainty in this work
might come from the accuracy of the initial concentration of Pb=", amount of adsorbent dosage,
and the initial pH adjustment, as the amount of the materials used 1s very small amount. Alse,
the humidity and the temperature of the room is not considered in this study which might affect
the accuracy of the results.
3.6 The effect of pH on the adsorption capacity

The pH is one of the very important factors which can affect the quantity and the form

of Pb?* in water, and the interactions of the mineral and Pb*", and the quantity and the form of
the minerals surface sites (Chen & Wang 2007).
The pH effect on adsorption capacity studied by mixing 12.5 mg adsorbent dosage with 5 mg/l
concertation at 15 min contact time with range pH values from | to 10. The experiment results
present that the pH of the solution was found as an important factor effacting the adsorption

efficiency. The pH increment led to significant increase in adsorption capacity until pH 5.0,
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then the adsorption capacity became steady with increasing pH. It is well known that at pH
greater than 7.0, the dominant species of Pb*™ are Pb(OH)™ and Pb(OH):. This complexation
may occur dus to the extensive presence of OH™ at this pH level which resulted in a
precipitation form (Gupta 2011). In addition, the decreasing of H™ plays a significant role
in the mechanism of Pb>™ adsorption due to the decreasing of competition of the active sides of
the adsorbent. The agreement of the ANN model predictions as a pH function is presented in
Fig. 6. From fig. 6, it can be noticed that the ANN model outputs showed almost the same
behaviour as the experimental data, this can prove that the ANN model can to predict the
adsorption capacity of Pb>™ removal from water satisfactorily.
3.7 The effect of adsorbent dosage on the adsorption capacity

The Adsorbent dosage is one of the important parameters involved in the adsorption
process, adsorbent dosage effect on the Pb*removal is examined by keeping the involved
factors as constant, at time 10 minutes, pH 3.0, and 5 mg/L of Pb** initial concentration. The
Pb®" removal capacity is decreased from 47.46 mg/m to 19.704 mg/g by increasing the
adsorbent dosage from 5 mg to 12.5 mg and 19.704mg/g to 12.392 mg/g by increasing the
adsorbent dosage from 12.5 mg to 20 mg. The decreasing in the uptake capacity with incréasing
in the adsorbent dosage might be attributed with increasing the adsorbent surface area
following in an increase of more active sites (Kumar & Phanikumar 2013; Das 2014).
The ANN technique is used for the modeling and prediction of the obtained data from the
experimental work, the prediction results shows a good agreement with the experimental result
trend. The ANN outputs and the experimental results as the function of dosage versus the
uptake capacity are presented in fig.7.
3.8 The effect of initial concentration

The initial concentration is one of the factors involved is this work, the effect of initial

concentration of Pb*" ions is studied by changing the initial concentration from 5 mg/l to 60
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mg/l. The other factors were fixed at, time 60 min, pH 2.7 and adsorbent dosage 5 mg. From
the presented results in fig. 8, it can be seen that the uptake capacity of Pb*" ions at 5 mg/l
concentration was 47.7 mg/g whereby increasing the Pb*" concentration to 60 mg/l the uptake
capacity increased to 225.05 mg/g. This might be attributed due to the increase in the driving
force of the mass transfer which lead to an increase in the uptake capacity of Pb*" ions from
water solution. At low concentration, the Pb*™ ions interact at the adsorbent active site whereas
at higher Pb*" concentration, the adsorbent active site will be saturated and the removal
percentage will be lower (Hamza 2013). The obtained data from the experimental work
are trained and predicted by using the ANN modeling techniques. The ANN model prediction
found satisfactory for the experimental data observation. The experimental and predicted

output of the ANN are presented in fig. 8.

3.9 The effect of contact time
The contact time is one of the involved parameter in the experimental work, the contact

time effect is studied with varying the contact time from 5 min to 120 min. The other involved
parameters are kept as constant, initial concentration 5 mg/l, adsorbent dosage 5 mg and pH 5.
The uptake capacity at 5 min time is 31.98 mg/g whereby, at 80 min the uptake capacity reached
to 48.1mg/g, the maximum uptake capacity at the equilibrium of time is 49.3 mg/g, It is clearly
from the results presented in fig.9 that 90% removal occurred at the 80 min (Kabbashi
2009a). This due to the availability of vacant sites at the adsorbent particles hence, the
adsorption rate will be higher at the beginning of the reaction. The ANN model was used for
the modeling end prediction of the obtained results, it can be seen from fig.9 that the ANN
model predicted the experimental data satisfactorily.
4. Conclusion

The artificial neural network (ANN) has been successfully used to predict the removal of

the Pb*™ from aqueous solution by using DES functionalized CNTs. The (tansig) transfer
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function was used in this study for modeling. Two different neural network types were
developed in this work the (BP-ANN) and (LR-ANN), Both the models are created with same
aim function and restriction with the same structure of dataset. The optimal topology of ANN
was obtained during training phase using (trainbr) algorithm. The results showed that the
network with 10 neurons in each hidden layer with three hidden layers, showed the best
performance. Moreover, the supervised (multi-layer feed-forward neural network) used in this
study.

The (MSE) of the (BP-ANN) model prediction is 1.66 10* with the (R*) of 0.9956. The
favourable features of the ANN modeling technique was originate to have many criteria such
as generalization, efficiency and simplicity, which make it a preferable choice for the modeling

= o - I
of complex systems, such as removal of Pb=" ions from water processes.
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Table 1 The range of input and cutput parameters

Parameters Minimum Maximum
Adsorbent Dosage (g) 5 20
Initial Concentration of Pb*™ (ppm) 3 60
PH 9.7 7
Contact Time (min) 3 900
Uptake Capacity (mg/g) (output) 7.12 294.5

Table 2 The selected training functions.
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Name of training function Training function
Quasi-Newton back-propagation Trainbfg
Bayesian regularization back-propagation Trainbr
Powell Beale conjugate gradient back-propagation Traincgb
Polak Ribi-ere conjugate gradient back-propagation Traincgp
Fletcher Reeves conjugate gradient back-propagation Traincgf
Levenberg Marquardt back-propagation Trainlm

PR RO R RN N RN

Table 3 Evaluation indicators
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FBNN LRNN

MSE 0.000166 0.00072
RMSE 0.012871 0.02687
RRMSE 0.057678 0.074638
MAPE 4.101775 5.605057
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Table 4 The training and testing sets.

MSE
Training % Testing % FBNN LRNN
70 30 0.024487 0.108435
75 25 0.009733 0.094116
80 20 0.005876 0.029661
85 15 0.000166 0.000722
90 10 0.066796 0.084524
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Table 5 The training function, R? and MSE

Feedforward backpropagation

layer recurrent

Training function MSE R? MSE R?
trainbfg 0.00903 0.7465 0.012892 0.856
trainbr 0.00016 0.9936 0.000722 0.990
traincgb 0.00297 0.9021 0.004446 0.956
traincgf 0.04631 0.4931 0.028921 0.663
traincgp 0.02303 0.6915 0.013207 0.891
trainlm 0.00068 0.9766 0.002822 0.968
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